This is my LeetCode exercise.
You can see all question I did here.
leetcode
easy
Tree
Depth-First Search
Binary Search Tree
Binary Tree
Given the root
node of a binary search tree and two integers low
and high
, return the sum of values of all nodes with a value in the inclusive range [low, high]
.
Input: root = [10,5,15,3,7,null,18], low = 7, high = 15
Output: 32
Explanation: Nodes 7, 10, and 15 are in the range [7, 15]. 7 + 10 + 15 = 32.
Input: root = [10,5,15,3,7,13,18,1,null,6], low = 6, high = 10
Output: 23
Explanation: Nodes 6, 7, and 10 are in the range [6, 10]. 6 + 7 + 10 = 23.
Node.val
are unique./**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* struct TreeNode *left;
* struct TreeNode *right;
* };
*/
int rangeSumBST(struct TreeNode* root, int low, int high) {
if (!root)
return 0;
return (((root->val >= low) && (root->val <= high)) ? root->val : 0) +
((root->right) ? rangeSumBST(root->right, low, high) : 0) +
((root->left) ? rangeSumBST(root->left, low, high) : 0);
}
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* struct TreeNode *left;
* struct TreeNode *right;
* };
*/
int rangeSumBST(struct TreeNode* root, int low, int high) {
if (!root)
return 0;
if (root->right) {
if (root->left) {
return (((root->val >= low) && (root->val <= high)) ? root->val : 0) +
rangeSumBST(root->right, low, high) +
rangeSumBST(root->left, low, high);
}
return (((root->val >= low) && (root->val <= high)) ? root->val : 0) +
rangeSumBST(root->right, low, high);
}
if (root->left) {
return (((root->val >= low) && (root->val <= high)) ? root->val : 0) +
rangeSumBST(root->left, low, high);
}
return (((root->val >= low) && (root->val <= high)) ? root->val : 0);
}
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* struct TreeNode *left;
* struct TreeNode *right;
* };
*/
int rangeSumBST(struct TreeNode* root, int low, int high){
if(!root) return 0;
int result = 0;
result += ((root->val >= low) && (root->val <= high)) ? root->val : 0;
if(root->left) result += rangeSumBST(root->left, low, high);
if(root->right) result += rangeSumBST(root->right, low, high);
return result;
}
Space | Time |
---|---|
$O(1)$ | $O(N)$ |